Get data from an elic_cat object.
Arguments
- x
an object of class elic_cat.
- topic
character string that indicates the mechanism to which the data belongs.
- ...
Unused arguments, included only for future extensions of the function.
- option
character string with the name of the option or character vector with the options that you want to extract from the data. Use
all
for all options.
Value
A tibble
with the extracted data.
See also
Other cat data helpers:
cat_add_data()
,
cat_sample_data()
,
cat_start()
,
summary.cat_sample()
Examples
# Create the elic_cat object for an elicitation process with three topics,
# four options, five categories and a maximum of six experts per topic
my_categories <- c("category_1", "category_2", "category_3",
"category_4", "category_5")
my_options <- c("option_1", "option_2", "option_3", "option_4")
my_topics <- c("topic_1", "topic_2", "topic_3")
my_elicit <- cat_start(categories = my_categories,
options = my_options,
experts = 6,
topics = my_topics) |>
cat_add_data(data_source = topic_1, topic = "topic_1") |>
cat_add_data(data_source = topic_2, topic = "topic_2") |>
cat_add_data(data_source = topic_3, topic = "topic_3")
#> ✔ <elic_cat> object for "Elicitation" correctly initialised
#> ✔ Data added to Topic "topic_1" from "data.frame"
#> ✔ Data added to Topic "topic_2" from "data.frame"
#> ✔ Data added to Topic "topic_3" from "data.frame"
# Get all data from Topic 1
cat_get_data(my_elicit, topic = "topic_1")
#> # A tibble: 120 × 5
#> id category option confidence estimate
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 5ac97e0 category_1 option_1 15 0.08
#> 2 5ac97e0 category_2 option_1 15 0
#> 3 5ac97e0 category_3 option_1 15 0.85
#> 4 5ac97e0 category_4 option_1 15 0.02
#> 5 5ac97e0 category_5 option_1 15 0.05
#> 6 5ac97e0 category_1 option_2 35 0.02
#> 7 5ac97e0 category_2 option_2 35 0.11
#> 8 5ac97e0 category_3 option_2 35 0.18
#> 9 5ac97e0 category_4 option_2 35 0.02
#> 10 5ac97e0 category_5 option_2 35 0.67
#> # ℹ 110 more rows
# Get data by option name----
# Get data for option_1 from Topic 2
cat_get_data(my_elicit, topic = "topic_2", option = "option_1")
#> # A tibble: 25 × 5
#> id category option confidence estimate
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 e51202e category_1 option_1 100 0.09
#> 2 e51202e category_2 option_1 100 0.21
#> 3 e51202e category_3 option_1 100 0.11
#> 4 e51202e category_4 option_1 100 0.59
#> 5 e51202e category_5 option_1 100 0
#> 6 e78cbf4 category_1 option_1 75 0.31
#> 7 e78cbf4 category_2 option_1 75 0.27
#> 8 e78cbf4 category_3 option_1 75 0.09
#> 9 e78cbf4 category_4 option_1 75 0.17
#> 10 e78cbf4 category_5 option_1 75 0.16
#> # ℹ 15 more rows
# Get data for option_1 and option_3 from Topic 3
cat_get_data(my_elicit,
topic = "topic_3",
option = c("option_1", "option_3"))
#> # A tibble: 60 × 5
#> id category option confidence estimate
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 5ac97e0 category_1 option_1 80 0.02
#> 2 5ac97e0 category_2 option_1 80 0.02
#> 3 5ac97e0 category_3 option_1 80 0.01
#> 4 5ac97e0 category_4 option_1 80 0.87
#> 5 5ac97e0 category_5 option_1 80 0.08
#> 6 5ac97e0 category_1 option_3 15 0.59
#> 7 5ac97e0 category_2 option_3 15 0.08
#> 8 5ac97e0 category_3 option_3 15 0.11
#> 9 5ac97e0 category_4 option_3 15 0
#> 10 5ac97e0 category_5 option_3 15 0.22
#> # ℹ 50 more rows